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Abstract
The anomalous behaviour of the temperature dependence of the electrical
resistivity in Pu-based dilute alloys (δ-Pu) has been considered within the Mott
two-band conductivity model. It has been shown that the physical origin of the
negative sign of the temperature coefficient of resistivity (TCR), observed in
δ-Pu based alloys, is the interference between electron–impurity and electron–
phonon interactions. A simple criterion for negative TCR observability at high
temperatures (T > θD) was found and applied to explain qualitatively the
experimental data on the TCR in some Pu-based dilute alloys. To make a
numerical evaluation of the electrical resistivity, the coherent potential approach
to the Mott two-band conductivity model was combined with the ab initio
obtained fcc-Pu density of states (as the starting point in the iteration procedure)
and applied to the calculation of resistivity temperature dependence in pure Pu
and Pu–5 at.% Al alloy. The results are compared with experimental data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The anomalous electronic and magnetic properties of plutonium and plutonium-based alloys
have been exciting the physical community for more than fifty years. Some of these anomalies
relate to crystal phase transitions; others are associated with the heavy-fermion character of
the electron system. Recent progress in experimental and theoretical studies has allowed us to
understand the nature of the plutonium ground state [1–4]. With this ground state plutonium
has to be an ordinary metal, distinguished only by strongly localized f electrons and an empty
d band. However, it becomes quite unclear from that point of view how to treat well-known
anomalies in the temperature dependences of the electrical resistivity (ER) in plutonium-based
dilute alloys [5–9].
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In this paper we analyse from the most general point of view how the ER will behave in
a simple model by considering ordinary scattering mechanisms; however, this is done without
making any assumptions on the weakness of interaction. In this approach we managed to
account consistently for the renormalization effects in the electron ground state by the phonon
subsystem at the final temperatures. If this renormalization turns out to be strong then the
anomalies in the resistivity temperature dependence, similar to those observed in experiments,
may emerge by themselves.

The most general features of experimental ER behaviour that we managed to describe
within the single model are the following. First, we explain the negative temperature coefficient
of resistivity (TCR) observed experimentally in δ-Pu dilute alloys [5–9] and, second, the
quadratic temperature dependence of the ER at low temperatures in these alloys. Thus we
have avoided the necessity of using two separate models [5, 10] for the explanation of ER
behaviour at low and high temperatures, and making any assumption concerning the specificity
of the density of states (DOS) near the Fermi level [10–15]. It might be thought also that the
application of modifications of the Kondo model looks unjustified as based on the conception of
δ-Pu alloys as pure metals [13] and the rather debatable treatment of experimental data in [14]
(see [16]).

The dynamic spin-density fluctuation model [15] predicts ρ(T )/ρsat ∼ aT −1 dependence
(where ρsat is a resistivity value of saturation) at high temperatures and negative TCR at some
particular values of Stoner theory parameters. However, the Stoner parameter values, which
may provide negative TCR, look unreasonably high [11]. Although this model predicts true-
like ρ ∼ T 2 dependence at low temperatures, which correlates with experimental data, nothing
can be said immediately about whether this correlation is physically based or fortuitous. The
latter seems more probable since the expected suppression of spin fluctuations, and therefore,
essential ER variations in an external magnetic field, following from this model have not been
found in experiments [11, 9].

Therefore, we have chosen as the starting point in our reasoning the Mooij
empirical rule [17], according to which the negative TCR correlates with high ER values
(∼100–140 μ� cm). Note, at first, that high ER values in the alloys are due to very high
residual resistivity, rating above 80 μ� cm [6–8]. Thus the residual resistivity contribution is
dominating over the temperature interval of negative TCR. However, this fact has never been
taken into account, but in our opinion its proper accounting is rather important.

Second, the negative TCR in Pu-based dilute alloys was observed only either for very light
(Al, Si, Ga and others) or very heavy (Np) impurities. Such specific sensitivity to impurity
mass gives evidence that the effect of the ion mass defect (i.e. electron–phonon interaction)
may be a pointer not only to understanding the problem of plutonium crystal lattice stability
under doping [18], but also to understanding the anomalous ER behaviour. The fact that
the negative TCR emerges only near and above the Debye temperature (∼100 K) gives an
additional argument in favour of this point of view.

2. Model

Let us consider within the Mott model [19] the systems of s and (d)f electrons, performing intra-
and inter-band transitions as a result of their scattering at the randomly distributed Coulomb
fields of impurity ions at finite temperature. The Hamiltonian of the electron subsystem can be
written in the following form [20]:

Ĥ =
∑

l

Ela
+
l al + 1

N

∑

n,l,l′
e−i(�k−�k′ , �Rn) B̂ll′ (n)a+

l al′ , (1)
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where El is the periodical part of the electron energy. The quantum number l includes the band
index j ( j = s, d, f) and wavevector �k; �Rn is a radius-vector of the nth site of a crystal lattice.

B̂ll′ (n) = ν(n)�Vll′ +
∑

α

aα(n)Q̂α,l,l′ (n), (2)

where �Vll′ = V A
ll′ − V B

ll′ describes the intensity of the electron–impurity part of the interaction
and the periodical part of this interaction is included into El . The factor ν(n) = αB(n)cA −
αA(n)cB randomly distributes the ions of alloy components along the sites of a crystal lattice;
αA(B)(n) = 1 if the nth site is occupied by an ion of the A(B) type, and equals zero in opposite
case, where cA and cB are alloy component concentrations. The operator Q̂α,l,l′ (n) describes
the intensity of the electron–phonon interaction.

If the thermal displacements of the ions are small, then the operator Q̂α,l,l′ (n) can be
written as

Q̂α,l,l′ (n) = Zα,ll′
−i√

N

∑

�q

√
q0

q

[
ei(�q �Rn)b̂�q − e−i(�q �Rn)b̂+

�q
]
, (3)

where

Zα,ll′ =
(

�KF

2Mα Sα

)1/2

·
(

2KF

3q0

)1/2

· Cα,l,l′ , (4)

are the constants of intensity of intra- and inter-band transitions due to electron–phonon
scattering. Mα is the α-ion mass and Sα is the velocity of sound in α-type metal; q0

is the maximum value of q and KF is the Fermi wavenumber of the electron; Cα,l,l′ is a
(Bloch) constant of electron–phonon coupling. Note that the matrix elements of the electron–
phonon interaction include two parts—dependent on and independent of the ions’ stochastic
distribution. Namely, the splitting of the electron–phonon coupling into two parts allows a
clear understanding of the physical meaning of the impurity mass defect effect.

The s, p, d, and f bands overlap, and therefore hybridization effects have to be taken into
account. However, these effects, as is well known, lead only to renormalization of the electron’s
ground state Hamiltonian and do not change its scattering part; therefore it will be assumed that
these effects are accounted for in the electron’s ground state. For the sake of simplicity we keep
the same band names after renormalization.

As has been pointed out above, the electron–impurity interaction is not assumed to be
weak. Therefore contributions from different types of scattering to the total ER may be not
summed up in a simple additive way, since the interference between them is not negligible
a priori. That is why one has to use calculation methods, whose validity is not limited by
the interaction intensity and which are able to account for the complex structure of the d and
f band DOS and the DOS deformation resulting from both electron–impurity interactions in
δ-Pu systems, on the one hand, and blurring of singularities in the DOS curve due to electron–
phonon scattering, on the other hand. Such a method is the multi-band coherent potential
approach (CPA).

As shown in [21], systems of CPA equations may be obtained using the identity

�̂ =
[
V̂ ĜV̂ + V̂ ĜV̂ ĜV̂ + · · ·

]

D
. (5)

where Ĝ = (z − Ĥ0 − �̂)−1 and the index D means that in [· · ·]D only strictly diagonal terms
in the Ĥ0 representation are kept and items containing the blocks are omitted.

Assuming Bn, j j ′(u) = ν(n)�Vj j ′ + Q j j ′(u) values independent of the wavevectors (�k,
�k ′) and functions of fluctuating variable u [22], using matrix representation of the band indices
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for B j j and the Green function, the series (5) may be summed up within single-electron and
single-site approaches [23]. Finally, for the coherent potentials of s-band electrons one obtains

〈�s〉ph = 1

N

∑

n

∫ +∞

−∞
du Pn(u)

B2
n,s(u)Fs(1 − Ff Bn, f (u)) + (1 + Fs Bn,s(u))B2

n(u)Ff

(1 − Fs Bn,s(u))(1 − Ff Bn, f (u)) − B2
n(u)Fs F f

, (6)

where

Pn(u) = 1√
2πβn

e−u2/2βn

is the Gauss distribution function with βn = Zα, j j ′6T/�n [22, 20] and � is the Debye
temperature. B j j(u) = B j(u) and B j j ′(u) = B j ′ j (u) = B(u). Full equations for �s may
be found from (6) after summation over sites n ∈ A and n ∈ B . The equation for the coherent
potential of f-band electrons is the same as (6) with only the replacement of band indices s � f.

Neglecting with inter-band transitions, i.e. assuming B = 0, then as follows from (6), two
independent equations corresponding to the single-band model of CPA can be obtained:

〈
� f

〉 =
∫ +∞

−∞
du cA PA(u)

(
cB�V + Q A, f (u)

)2
Ff

1 − Ff
(
cB�V + Q A, f (u)

)

+ cB PB(u)

(
cA�V − QB, f (u)

)2
Ff

1 + Ff
(
cA�V − QB, f (u)

) . (7)

The second equation may be derived from the above by replacement of band indices f → s.
Note that the equations (7) for the coherent potentials essentially differ from the main

equation in [22], since the latter was obtained assuming that the average over configuration
single-site scattering T matrix is zero (〈〈Tn〉ph〉c = 0).

As is well known from the band structure ab initio calculations, the DOS for d and
f electrons in actinides is significantly higher than that for s (p) electrons. Therefore it is
reasonable to assume that |Bs Fs | � 1, |B Fs| � 1 and |Bs Fs |/|B f F f | � 1, |B Fs|/|B Ff | �
1. Then the system of equation (6) can be simplified, since the f-electron’s coherent potential
equation coincides with (7) and an expression for the s-electron’s coherent potential can be
written from (7) by the substitution Qα, f (u) → Qα(u).

Using the above assumptions and assuming also the �Vj j ′ = 0 in (7) one can obtain
coherent potentials in the pure metal:

〈
� f

〉 =
∫

du P(u)
Q2

f (u)Ff

1 − Q f (u)Ff
, 〈�s〉 =

∫
du P(u)

Q2(u)Ff

1 − Q(u)F f
. (8)

In this cause β = Z j j ′2T/�.
The CPA equations include several parameters of the theory. Parameters �Vj j ′ equal the

difference in positions of the gravity centres on the total energy scale of the alloy component
bands. Usually within CPA they are approximated as �Vj j ′ ≈ �V , and the latter can be
estimated from the data of ab initio calculations. Other parameters (Zα, j j ′ in (6)–(8)) can be
estimated based on available experimental data.

To account in a reliable way for the effect of the individual electronic DOS of the alloy
components on the alloy kinetic properties, the CPA equations have to be solved numerically
using a realistic, ab initio calculated DOS of the alloy components. The initial alloy DOS may
be chosen according to the approach described in [23].

Model simplifications used in the derivation of equation (7) are equivalent to the main
Mott’s conductivity model assumptions, where only the inter-band electron transitions have
been considered, since the probabilities of the others turn out to be very low as compared to
that of s → (d)f transitions. As a result of such simplifications, all numerical calculations
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within the Mott conductivity model for metals and alloys at high temperature can be carried out
in well-known manner, using the Kubo formula for electrical conductivity.

The full system of the CPA equation (6) is very difficult for direct analysis and solution.
However, several simple estimations can help to analyse the ER temperature dependence
qualitatively. For our reasoning it is sufficient to consider only the main terms that are linear
with temperature in the perturbation theory row, taking into account terms only of the second
and third order per interaction. Since the ER is proportional to the imaginary part of the shift
operator, then from (6) one obtains an expression consisting of three terms:

ρ/ Im Fj (EF) ∼ cAcB�V 2 + {cA Z 2
A(T/θA) + cB Z 2

B(T/θB)}
+ 2cAcB

[
2�V

(
Z j A Z A(T/θA) − Z j B Z B(T/θB)

)

+ �Vs j
(
Z 2

A(T/θA) − Z 2
B(T/θB)

)]
Re G j(EF) (9)

where Fj (EF) is the Green function at the Fermi level. The first term in (9) describes only
electron–impurity scattering and it determines the value of residual resistivity. The second
term corresponds to electrons scattered at the ‘pure’ phonons. The term in the quadratic
brackets describes the interference between electron–impurity and electron–phonon couplings.
Assuming additionally that Z j,α ≈ Zα,�Vj ≈ �V the following simple criterion for negative
TCR observability at high temperatures, i.e. (T > θ), can be found:

1 + 6cAcB�V
Z 2

A/θA − Z 2
B/θB

cA Z 2
A/θA + cB Z 2

B/θB
Re F f (EF) � 0. (10)

Thus the values of �V , the difference between electron–phonon coupling constants of solvent
and impurity, and the real part of the Green function at the Fermi level, which are available
from experimental data and ab initio calculations, determine the sign of the TCR.

3. Results and discussion

It is reasonable to imply that in dilute alloys (cB � 5 at.%) the solvent band structure and
elastic properties are almost the same as in the pure metal, and for the qualitative estimates
one can assume that θB ≈ θA and SB ≈ SA. In this case only the distinction between solvent
and impurity ion masses determines the difference between the elastic constants of solvent and
impurity.

The first parameter �V can be evaluated according to Harrison [24] as ∼(−10) eV. The
numerical value of Re F(EF) has been determined from ab initio DOS calculations in pure fcc-
Pu by the LSDA+U method [25, 26], and it equals (−1) eV−1. Using simple Bloch estimation,
as Csf,α ∼ 2/3EF,α, the difference between electron–phonon constants of solvent and impurity
can be evaluated.

Using experimental data for the Debye temperature, velocity of sound [27], and lattice
parameter in fcc-Pu, and applying criterion (10), one obtains the theoretical predictions for the
TCR in δ-Pu alloys, doped with 5 at.% of various impurities; these are presented in figure 1.
The TCR sign is negative in the case of doping with light impurities (Al, Ga, Ge, Si, Sc)
and positive in the case of intermediate impurity masses (Ir, Rh, Pd, Pt, In). Almost all
predictions agree with the available experimental data. Therefore it is very likely that the
observed regularities of TCR sign variation with impurity mass come from the interference
between electron–impurity and electron–phonon interactions. It is rather interesting to stress
that a negative TCR is also predicted for plutonium doped with very heavy impurities, such
as Np, Am, Cm, since the difference between their reciprocal masses is very small. However,
the lack of reliable experimental data prevents us from making any accurate predictions on this
account.

5
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Figure 1. The relationship between the electron–phonon coupling constant and the sign of the TCR
in dilute Pu-based alloys. The value of the electron–phonon coupling constant for different types of
impurity in Pu is at the intersection of the vertical lines and the x-axis.
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Figure 2. Temperature dependence of ER in pure fcc-Pu and Pu0.95Al0.05 allow. Solid lines—results
of calculations.

The results of CPA calculations for the ER in pure fcc-Pu using equations (8) and a Bloch
constant value about 0.8EF [27] are shown in figure 2. Experimental data for pure Pu ER are
unknown. Compared to ER data in the other 4d (5d) transition and 4f (5f) rare-earth metals [8],
the obtained ER demonstrates ordinary behaviour with temperature without any anomalies.
The high value of ER is a result of s → d and s → f scattering and weak nonlinearity in the
ER temperature dependence above θD and is caused by DOS erosion at the Fermi level due to
electron–phonon interaction.

Full solution of the CPA equations (7) in the case of δ-Pu alloy doped with 5 at.% Al,
obtained with use of the ab initio plutonium DOS and the Green function [26] as the starting
point in the numerical calculations, demonstrates that the electron–impurity and electron–
phonon interactions significantly smoothen all initial fine singularities in the DOS curve and
make the resultant DOS value at the Fermi level decrease with temperature. A similar result
was observed experimentally by Lashley [28] in δ-Pu doped with 5 at.% Al in heat capacity

6



J. Phys.: Condens. Matter 19 (2007) 056207 Yu Yu Tsiovkin and L Yu Tsiovkina

C
el

/T
 (

m
JK

-2
 m

o
l-1

)

g
f(E

F
) 

(1
/e

V
)

Temperature, K

Figure 3. Comparison of calculated gF(EF) in δ-Pu0.95Al0.05 as a function of temperature (right
axis) and experimental dependence of Cel/T [28] (left axis).

measurements. The comparison between the calculated DOS value at Fermi level and the
ratio of the electronic part of heat capacity Cel to temperature T (Cel/T ), extracted from
experimental data [28] is presented in figure 3. The magnetic susceptibility data [14, 29] in
the same alloy also demonstrate the drop of DOS values at the Fermi level with temperature.

The temperature dependence of ER in δ-Pu stabilized with 5 at.% Al, calculated with the
Kubo formula in the same manner as mentioned above, is shown in figure 2. It is seen that
the theoretical curve fits the experimental data well at 100 K < T < 300 K and predicts
the TCR sign inversion at T > 450 K. Thus the direct numerical calculation confirms the
validity of criterion (10), obtained from a general qualitative consideration. The agreement
between theoretical and experimental data in respect to the DOS as well as the ER behaviour
with temperature gives evidence in favour of our approach taking into account the interference
between electron–impurity and electron–phonon interactions.

Our approach allows avoiding various assumptions of unknown reliability, which have
often been used previously to describe the negative TCR as ∼T 2 dependence. It is likely
that the presented model also permits understanding the ER behaviour at low temperatures.
It has been found earlier [30, 31] that in dilute alloys characterized by interference between
electron–impurity and electron–phonon interactions, the Mott model predicts a ρ(T ) ∼ T 2

regularity at low temperatures in contrast to a ρ(T ) ∼ T 3 one, which is typical in alloys
without interference. Thus all the observed features of ER behaviour, both at low and high
temperatures, can be explained in a natural way within the single model without making any
assumption about the DOS structure at the Fermi level.

Note, that our calculation of the ER in pure fcc-Pu at high temperatures, carried out in the
same model using equations (8), predicts typical metallic behaviour of the ER over the whole
temperature region (see figure 2). The comparison with experimental data in other actinides—
Th, Pa, U, Am, Np (see for example [8]) demonstrating similar ER behaviour—shows that the
ER in pure fcc-Pu has no specific peculiarities and that fcc-Pu is an ordinary metal in a row
among other actinides.

A new unusual effect, which must correlate with the negative TCR and interference
between different types of scattering, is the renormalization of a ground-state energy in Pu-
based alloys. As a result of interference, a new energy local minimum is formed in these alloys.
This effect may be very important for understanding the nature of Pu-based alloy stability.

As follows from our numerical calculations, s-electron scattering into d and f bands is
nearly equiprobable, since the DOS values at the Fermi level in d and f accepting bands are

7
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almost the same. Therefore mobile s-type electrons are able to scatter into and fill up the empty
d states, thus leading to the probable emergence of weak magnetic moments observed in some
Pu-based alloys. It looks rather interesting to seek for correlation between the above specific
electron scattering and magnetic properties.
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